Where Dirt and Policy Meet: The Economics of Soil Carbon

Chris Hartley
Amy King
Angela Kong
Bapu Vaitla
Stephen A. Vosti

KEARNEY FOUNDATION OF SOIL SCIENCE

Center For Natural Resources Policy Analysis (CNRPA)

Environmental Issues Center (EIC)
Objectives

• Introduce the Notion of Carbon Markets
• Identify Key Economic Issues
• Briefly Discuss Tools
• Present Preliminary Results
• Hear from You About Contracts for Soil Carbon Sequestration
Why A Carbon Market?

• **Emissions Reductions**
 – Reduce CO2 and other GHG

• **Efficient Allocation of Emissions**
 – Distribute the emissions efficiently across regions, countries, sectors, industries within sectors, and firms within industries

• **Kyoto Protocol**
 – Took effect on February 16, 2005
What Is Traded?

• Allowance-Based Transactions
 – Trading of government-issued allowances to emit GHG

• Project-Based Transactions
 – Trading emissions credits generated by projects that reduce GHG emissions
Carbon Market Volume

State and Trends of Carbon Market 2005

FIGURE 1: ANNUAL VOLUMES (million tCO₂e) OF PROJECT-BASED EMISSION REDUCTIONS TRADED (up to 2012 vintages)
Who’s Buying?

Jan. 2004 – April 2005
Who Is Selling?

Jan. 2004 – April 2005
FIGURE 6: TOTAL MARKET VALUE (ESTIMATE) PER YEAR in million U.S. dollars (nominal)
Prices Paid for Carbon

FIGURE 5: PRICES FOR NON-RETAIL PROJECT-BASED ERs January 2004 to April 2005 (in U.S.$ per tCO$_2$e)

ER = Emission Reductions (projects); VER = Verified Emissions Reductions; CER = Certified Emissions Reductions; ERU = Emission Reduction Units
Key Economic Issues

• Private Costs and Benefits
 – Level of profitability
 – Cash flow
 – Changes in production costs
 – Change in farmers’ time requirements

• Social Costs and Benefits
 – Types of costs; timing
 – Types of benefits; timing; beneficiaries
One Tool -- LUS Analysis

• Focus on Land Use Systems (LUS)
 - Multi-year duration
 - Different intermediate and end uses

• Estimate Economic Effects
 - Discounted streams of input costs and product revenues
 - Calculate economic returns to key factors of production
 - Land, labor

• Estimate the Environmental Effects

• Estimate the Sociocultural Effects

• Highlight Institutional Impediments to LUS Adoption
The Field 74 Carbon Sequestration Project

• **Focus:** Identify the impacts in a maize-wheat system of reduced till vs. standard till on CO$_2$ and N$_2$O flux, crop yield, water quality and balance, and system profitability
CO₂ and N₂O flux

CO₂ flux from portable chambers, Jan-Dec 2004

- Minimum Till
- Standard Till

N₂O flux from portable chambers, April-Dec 2004

- Standard Till
- Minimum Till
Yield and Profitability

• Results to date
 – Yields declined sharply in year one
 • RT yield ➞ 3.64 tons/acre
 • ST yield ➞ 5.32 tons/acre
 – Despite reduced operational costs in RT system profits fell sharply
 • RT NPV/acre (7 years) ➞ $1022
 • ST NPV/acre (7 years) ➞ $1597
Costs of Additional Soil Carbon in Field 74

- **Annual Yield Increase** (per Adoption Incentive)
- **Net C Gain** (lbs SOC/yr/ac)
- **Cost of SOC** ($/ton)

Bar chart showing the relationship between annual yield increase and net carbon gain at different cost levels. The chart includes data points for 0%, 3%, 5%, and 8% adoption incentives.
C Sequestration in LTRAS Organic vs. Conventional Maize-Tomato Systems

Focus: Identify the effects of organic (vs. conventional) management of a maize-tomato rotation over 9 years on soil organic carbon, crop yields and system profitability.

<table>
<thead>
<tr>
<th>LUS</th>
<th>Even Years</th>
<th>Odd Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional maize-tomato (CMT)</td>
<td>fertilized irrigated corn</td>
<td>fertilized irrigated tomato</td>
</tr>
<tr>
<td>Organic maize-tomato (OMT)</td>
<td>winter legume / irrigated corn compost / no pesticides</td>
<td>winter legume / irrigated tomato compost / no pesticides</td>
</tr>
</tbody>
</table>
Crop Yields
(tons/acre)

<table>
<thead>
<tr>
<th></th>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td></td>
</tr>
<tr>
<td>maize</td>
<td></td>
<td>5.84</td>
<td>4.64</td>
<td>4.64</td>
<td>5.66</td>
<td>5.63</td>
<td>5.28</td>
<td></td>
<td></td>
<td></td>
<td>5.28</td>
</tr>
<tr>
<td>tomato</td>
<td></td>
<td>12.97</td>
<td>25.15</td>
<td>10.46</td>
<td>27.54</td>
<td>19.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic</td>
<td></td>
</tr>
<tr>
<td>maize</td>
<td></td>
<td>3.98</td>
<td>3.02</td>
<td>3.87</td>
<td>3.29</td>
<td>2.39</td>
<td>3.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tomato</td>
<td></td>
<td>31.16</td>
<td>26.31</td>
<td>30.73</td>
<td>32.40</td>
<td>30.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Profitability

<table>
<thead>
<tr>
<th>System</th>
<th>Net Present Value ($)</th>
<th>Returns to Land ($/ac/year)</th>
<th>Profitability as % of Conventional System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>8278</td>
<td>307</td>
<td>--</td>
</tr>
<tr>
<td>Organic, No Premium</td>
<td>1981</td>
<td>73</td>
<td>24%</td>
</tr>
<tr>
<td>Organic, Declining Premium</td>
<td>4315</td>
<td>160</td>
<td>52%</td>
</tr>
<tr>
<td>Organic, Premium</td>
<td>5607</td>
<td>623</td>
<td>203%</td>
</tr>
</tbody>
</table>
Soil Carbon Accumulation
(over 9 years)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Soil Carbon Content (tons/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Maize-Tomato</td>
<td>2.44</td>
</tr>
<tr>
<td>Conventional Maize-Tomato</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Profitability & Increased Soil C

![Graph showing the relationship between soil carbon content (tons C/acre/yr) and returns to land ($/acre/yr). The graph includes data points for various LTRAS yields and organic premiums.](image)

- **LTRAS Yields, Organic, Premium**
- **LTRAS Yields, Conventional**
- **LTRAS Yields, Organic, No Premium**
- **LTRAS Yields, Organic, Declining Premium**
- **Average Local Yields, Organic, Premium**
- **Average Local Yields, Organic, No Premium**
- **Average Local Yields, Organic, Declining Premium**
- **Average Local Yields, Conventional**
Case Study Conclusions (Preliminary)

- Stocks of Soil Carbon Can Be Increased in California, but the Amounts Will Depend on:
 - climatic conditions
 - management strategy
 - product mix
 - soil type

- Changes in Product Mix and Crop Management Strategies Can Increase Soil Carbon
 - Such Changes Can Be Costly to Farmers, and Yields and Profits May Decline

- Soil Carbon-Profitability Trade-Offs
 - Field 74 Study Exhibited Trade-Offs

- Soil Carbon-Profitability Synergies
 - LTRAS Tomato/Maize Study Exhibited Synergies
 - These depended greatly on price the premiums
Policy Implications

- Paying Farmers to Sequester Carbon Could Be Expensive
- Payment schemes would have to address local heterogeneity in soil and climate conditions
- Soil Carbon Pools Have Maxima and Sequestered Carbon Can Be Quickly Lost
 - Payment schemes need to take account of this
- Not All Increases in Soil Carbon Are ‘Sequestered’
 - Out-of-system inputs can matter greatly
 - Perhaps these ‘imports’ should also be paid for under incentive schemes
Implications for Research

• We Need to Know Much More About Carbon Dynamics in California Soils
 – Product mixes
 – Soil management practices
 – Soil types
 – Limits to and stability of carbon pools

• We Need to Know More About the Effects of Different Tillage and Residue Management Strategies on:
 – Yields
 – Production costs
 – Risk
 – Profits
Contracts for Soil Carbon Sequestration

- Standard Contracts
- Modifying Contracts to Meet the Needs of California Farmers
 - Duration
 - Up-Front costs
 - Escrow accounts
 - Monitoring
 - Within-contract changes in
 - Product mix
 - Production technology
• THANKS!

• WHAT ARE YOUR VIEWS?