Rates of Soil Carbon Accumulation and Transformation in a Ponderosa Pine Forest Using High Resolution Chronosequence Analysis

R. C. Graham
University of California, Riverside
Chronosequence Analysis

\[S = f(t)_{cl,o,r,p} \]

- **S**: soil formation
- **t**: time
- **cl**: climate
- **o**: organisms
- **r**: relief
- **p**: parent material

Hans Jenny
Chronosequence of alluvial fan terraces

Lettis, 1985
Chronosequences in xeric southern California

Scale: 1k - 100 k years
Resolution: 1k - 10 k years
Soil organic carbon studies need a shorter time span and greater resolution.
Mt. Shasta Chronosequence

A = 27 yr
B = 60 yr
C = 205 yr
D = 566 yr
E = 1200+ yr
Carbon accumulation in Mt. Shasta Chronosequence

- Total: 12.9 kg m⁻²
- Soil (0-3s’): 8.6 kg m⁻²
- Forest Floor: 4.3 kg m⁻²
Elevation = 1675 m
MAP = 650 mm
Geologic material: gneissic regolith
Soil texture: loamy sand (5% clay)
Objectives

• Assess the rate of carbon accumulation on a scale of decades.
• Determine the forms of soil organic matter as a function of soil age.
• Interpret the processes of carbon incorporation and storage in the soils.
Initial Field investigations
Initial Laboratory Results
Organic Carbon Storage to 80 cm depth

Organ Carbo (kg m2)

Soil Age (ye)

<0.5 28 97 400

Mineral soil O horizon
<table>
<thead>
<tr>
<th></th>
<th>Mt. Shasta (566 years)</th>
<th>Forest Falls (400 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litter</td>
<td>4.3</td>
<td>6.0</td>
</tr>
<tr>
<td>Mineral soil</td>
<td>9.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Total</td>
<td>13.8</td>
<td>10.2</td>
</tr>
</tbody>
</table>

- Mineral soil

Forest Falls (400 years)

Mt. Shasta (566 years)

Litter kg m\(^{-2}\)

Forest Falls

Mt. Shasta
Future Work

• Sample soils on more flow ages
 - especially <200 yr

• Determine changes in forms of SOM
 - C by size fraction
 - solid state 13C NMR

• Investigate processes
 - litterfall
 - litter decomposition (litter bags)
 - soil fauna (pitfall trapping)
 - fine roots
 - soil respiration
 - microbial characterization (biomass, plfa)
 - soil temperature
 - micromorphology