

Spatial Variability of Greenhouse Gas Emissions and Their Controlling Factors in an Agricultural Landscape

Juhwan Lee, Chris van Kessel, Dennis E. Rolston, Johan Six, and Amy P. King Departments of Plant Sciences and Land, Air, and Water Resources, University of California, Davis

respectively.

Variables

Sand

Clav

Silt

Total C

Total N

POM-C

POM-N

NH₄⁺

NO₂

MBC

DOC

WFPS

P-value

Water content

nd = not determined

BD

 R^2

Results and Discussion

CH₄

Field moist 75% WHC

(a = 5)

0.00073

-0.00075

-0.00071

0.00009

0.00014

nd

nd

0.00004

0.00033

0.00009

0.00000

0.00034

-0.00022

0.00003

0.704

<.0001

(q = 4)

0.00021

-0.00022

-0.00021

0.00004

0.00007

-0.00017

-0.00018

0.00009

-0.00008

-0.00006

0.00008

0.00018

-0.00001

-0.00001

0.396

0.0018

Introduction

- ► The impact of increased atmospheric CO₂ and other greenhouse gases (GHG) on global climate change is of concern.
- ► To mitigate the emissions of GHG from agricultural soils, direct emission reductions and terrestrial C and N sink expansions will be reauired.
- ► In the Sacramento Valley agriculture is dominated by intensively irrigated systems under a Mediterranean climate. leading to substantial GHG emissions.
- One option to mitigate GHG emissions is increasing the amount of C and N stabilized in soil organic matter (SOM) by minimum tillage (MT). MT improves soil structure, leading to more protection of SOM from microbial decomposition.
- ► The effectiveness of MT is however dependent on soil properties that vary across the landscape.

Objective

To determine the factors that are responsible for the spatial variability of GHG emissions as affected by the interaction between tillage and simulated irrigation

Materials and Methods

Soil Sampling:

- ► Agricultural field of 30 ha managed under MT since 2002
- Standard tillage (ST) operation only on the north side of the field in October 2003
- ► Two adjacent intact soil cores (5 cm X 15 cm) taken at 40 locations in April 2004

Experimental Incubation:

- ▶ 10-day incubation each at 25°C at field moist content and 75% water holding capacity (WHC)
- ► Measured the headspace concentrations of CO₂, N₂O, and CH₄ at days 1, 2, 3, 5, 7, 10
- ► Analysis: bulk density, water content, soil texture, K₂SO₄ extracted organic C, K₂SO₄ extracted ammonium and nitrate, and total, microbial, particulate organic matter fraction (53-2000 µm) C and N
- Data Analysis:
- ▶ Principal component regression (PCR) on the soil variables

Figure 1. Aerial photo of the research site located in the Sacramento Valley, CA: Three soil types are found across this furrow-irrigated system : Myers clay (Ms), San Ysidro loam (Sh), and Hillgate loam (HdA).

Days of incubation

(Kep lios 6/N-0-2N 6rl) 0.00	⊆ç 10 Day	15 vs of ir	20 ncubati	25	ST → MT	35
· 40.0 · 20.0 agi (ad) · 00.0			Į.	-	●—ST ⊙—MT	

5 10 15 20 25 30 35 Days of incubation

Figure 2. GHG emission rates at field moisture content and 75% WHC

Table 1. Eigenvectors, eigenvalues, and cumulative proportion
of total spatial variance for the first four principal components in
the data measured at field moist content

	Principal Component				
Variables	PC1	PC2	PC3	PC4	
Sand	-0.435	0.029	0.017	0.166	
Clay	0.442	-0.042	-0.008	-0.126	
Silt	0.425	-0.022	-0.022	-0.182	
Total C	0.128	0.433	0.234	0.019	
Total N	0.071	0.450	0.215	0.012	
POM-C	0.379	-0.138	0.096	0.297	
POM-N	0.378	-0.148	0.094	0.306	
NH_4^+	-0.075	-0.060	0.287	0.677	
NO ₃	0.137	0.090	-0.226	0.105	
MBC	0.094	0.192	-0.444	0.504	
DOC	0.029	-0.044	0.728	-0.030	
BD	-0.226	0.404	0.060	0.088	
Water content	0.115	0.407	-0.126	-0.005	
WFPS	0.167	0.433	0.023	-0.097	
Eigenvalue	4.699	3.826	1.557	1.250	
% of total variance	33.6	60.9	72 0	80.9	

Table 3. Principal component regression estimates of regression coefficients for GHG

 CO_2

Field moist 75% WHC

(a = 5)

0.850

-0.839

-0.842

0.007

-0.011

nd

nd

0.535

-0.112

0.736

0.060

0.056

-0.257

-0 131

0.631

<.0001

*PCR models only account for the positive rates of log-transformed N2O emission.

(q = 4)

-0.089

0.077

0.094

0.164

0.168

-0.058

-0.063

-0.198

0.112

0.158

-0.197

0.123

0.245

0 240

0.241

0.053

emission rates using g = 4 and 5 principal components at field moist content at 75% WHC,

Log-transformed N₂O*

Field moist 75% WHC

(q = 5)

0.021

-0.009

-0.026

-0.029

-0.043

nd

nd

0.103

-0.153

0.104

0.010

-0.051

0.033

-0.003

0.219

0.2555

(a = 4)

-0.069

0.068

0.069

0.028

0.022

0.036

0.035

-0.050

0.040

0.045

-0.048

-0.017

0.050

0.051

0.570

<.0001

Table 2. Eigenvectors, eigenvalues, and cumulative proportion of total spatial variance for the first five principal components in the data measured at 75% WHC

	Principal Component					
Variables	PC1	PC2	PC3	PC4	PC5	
Sand	-0.025	-0.559	0.029	0.083	-0.013	
Clay	0.025	0.549	-0.075	-0.052	-0.051	
Silt	0.024	0.554	-0.007	-0.098	0.044	
Total C	0.433	0.077	0.127	0.046	0.365	
Total N	0.441	0.022	0.126	-0.036	0.335	
NH4 ⁺	-0.037	0.025	0.623	0.407	-0.056	
NO ₃	-0.208	-0.051	0.118	-0.467	0.639	
MBC	0.002	0.064	-0.256	0.745	0.452	
DOC	-0.002	0.059	0.698	-0.040	-0.040	
BD	0.413	-0.229	-0.065	-0.178	0.083	
Water content	0.425	0.073	-0.034	0.044	-0.316	
WFPS	0.470	-0.065	-0.037	-0.058	-0.162	
Eigenvalue	4.165	3.159	1.507	1.119	1.067	
% of total variance	34.7	61.0	73.6	82.9	91.8	

Summary

- 1. Spatial variability of GHG emissions was great at the field scale, masking tillage-induced differences in the emissions (Figure 2).
- 2.Upon wetting the soil cores to 75% WHC, both CO₂ production rates and N₂O emission rates drastically increased but more in the MT than ST soils
- 3. Principal component analysis identified four and five PCs for GHG at field moist content and 75% WHC. respectively, with eigenvalues greater than 1 and condition number smaller than 10 (Table 1 and 2).
- 4. Most of the spatial variability of GHG emissions could be generally explained by differences in soil texture and soil C and N content, and to a lesser degree by differences in soil water, indicating an interaction between tillage, soil texture, and moisture content in determining GHG emissions.
- 5.Models obtained by principal component regression significantly account for approximately 24-70% of variation in GHG emission rates under the wide range of soil water condition (Table 3). However, the model for N₂O under 75% WHC condition was not significant due primarily to limited N₂O observation.

Acknowledgement: This research is funded by the Kearney Foundation of Soil Science

