THE EFFECTS OF NITROGEN ADDITION AT DIFFERENT STAGES OF DECOMPOSITION

Mary Greas

Department of Ecology & Evolutionary Biology

Dr. Kathleen Treseder

Research Goal

 The purpose of this experiment was to investigate effects of nitrogen (N) addition at contrasting stages of decomposition in a California grassland.

Sedgwick Reserve, Santa Ynez Valley, California-Natural Grassland

Research Questions

- Does nitrogen have an effect on decomposition rates?
- Does nitrogen have a direct effect on the aged litter?
- Does the amount of nitrogen have a indirect effect on aged litter?
- compared N effects on decomposition of fresh litter, old litter, and light fraction

Hypothesis

 Hypothesis: As N addition rates increase, decomposition of fresh litter and old litter will increase to a maximum value, and ultimately decrease. It's expected decomposition rates of light fraction to be unaffected by N levels.

Materials & Methods

Microcosm-scale experiment

•3 different substrates
•Fresh litter (A)
•Old Litter (B)
•Light Fraction (C)

Ages and Initial C:N ratios of substrates

Substrate		C:N	Age (y)*	Definition
NL	NewLitter	53	1	Current year plant production
OL	Old Litter	23	5	Soil Organic Matter <1_g/m l in density
LF	Light Fraction	15	15	Soil Organic Matter <2 g/mLin density
*Age of OL and LF, based on ¹⁴ C; age of NL assumed				

- New litter consisted of standing dead leaves that were produced during the growing season of 2007
- The top 10 cm of litter and soil was extracted using a soil corer.

Nitrogen effects were studied using seven species extracted from Sedgwick Natural Reserve

- Bromus hordeaceus (Poaceae)
- Bromus diandrus (Poaceae)
- Nassella pulchra (Poaceae)
- Avena barbata (Poaceae)
- *Erodium cicutarium* (Geraniaceae)
- Lactuca serriola (Asteraceae)
- Artemisia californica (Asteraceae)

Materials & Methods

- 4 different levels of nitrogen
 - 0-, 1-, 4-, and 10 g-N/m²
- Incubated for 90-day period with Inoculum
- Organized into a randomized complete block design
- 6 replicates for each N level, substrate type
- Measurements taken with LiCor

Results

- Overall, litter substrates are significantly different from one another (ANOVA, P < 0.001; Tukey, P <0.001 in each case).
- Effects of N addition do not vary amongst different stages of decomposition (ANOVA, P=0.232).

Results

- Overall change of decomposition rate with substrate compared to nitrogen level
- Changes greater as substrate is younger and exposed to more nitrogen

- Nitrogen had no significant effect on the decomposition of the light fraction, old litter, and new litter.
- Our findings were consistent with Chen et al.'s (2008) study

- Many fungi and bacteria decompose organic material readily under N.
- In this case, microbial activity was positively affected when levels of N were exceptionally high for prolonged periods.
- But as the litter gets older, enzyme activity slowly decreases because structures are not as competent as early microbe structures.

- Findings were also consistent with those of Joergensen and Potthoff (2004), who found unbalanced exchanges of unstable substrates in microbial communities.
- Extracellular enzymes become deactivated and eventually unstable as litter aged. This may be the reason why the substrates did not interact with N.

- There may have been an unbalance of litter species with various respiration rates
- Some of these particular species may have higher respiration rates than other species that could be a potential factor in the overall experiment

- Evident Source of Error: NOT In Situ experiment
- The lack of N effects in our study may have resulted because the experiment was conducted in a microcosm-scale environment and did not allow for all naturally occurring environmental factors to take place as they would under *in situ* conditions.
- The absence of naturally occurring environmental factors may have caused decomposer enzymes to be unstable

• Other source of error:

 Human contamination-Possibly some of the tubes did get contaminated while measurements were taken, which would explain the large error bars in Figure 1.

Further Studies

- Further studies could be conducted within a larger ecosystem-scale project to improve our knowledge of N and C cycling within ecosystems.
- Observing geographical features of area can help aid into fully understanding all factors that contribute to an overall well-functioning ecosystem.

Outcomes and Goals of Research

- Policy makers may gain a better understanding of the ways anthropogenic N may impact the C budget in one of California's major ecosystems.
- Reduce carbon footprint for a more Green Earth.

Acknowledgements

- Department of Ecology & Evolutionary Biology at the University of California, Irvine
- Dr. Kathleen Treseder and staff for providing me with facility to conduct research
- Kearney Foundation Fellowship for funding support
- Sedgwick Reserve for access to field site
- My family and friends