The Effect of Biochar on Heavy Metal Sorption: Nickel, Copper, Lead, and Cadmium

Allie Jefferson
2010 Kearney Undergraduate Fellowship Report
Department of Land, Air and Water Resources
The University of California, Davis
What is Biochar?

Biochar is a form of charcoal produced by the pyrolysis of biomass.

Biochar is a biproduct in the production of biofuels.
Background

- Studies suggest biochar application to soils:
 - Improve crop production
 - Increase carbon sequestration and reduce greenhouse gases

- Preliminary data collected in the Parikh Lab show high sorption capacity of DOC from water to walnut shell biochar, while wood feedstock biochar shows low sorption capacity.

- Previous studies show decrease of heavy metals with application of different types of biochar and biosolids
Research Goal

To study the effect of biochar soil amendment on the transport of heavy metals and organics in soil ecosystems, focusing on heavy metal sorption.
Specific Objectives

To measure the sorption of

I. Nickel, copper, lead and cadmium independently

II. Nickel, copper, lead and cadmium in competition

III. Nickel, copper, lead and cadmium in competition with the addition of biosolids
Method

Part I: Individual Metal Experiments

- Added 0.48g Kaolanite, Activated Carbon, Walnut and Wood Feedstock Biochar to 15 mm tubes in a 5mm NaCl solution at pH 7
- Put on shaker for 48 hours
- Added 0-200 ppm of Nickel to each tube
- Put on shaker for 24 hours
- Centrifuged, Filtered, Acidified
- Analyzed using Atomic Absorption
- Repeated for each metal individually (Copper, Lead, and Cadmium)
Part II: Combined Metal Experiments

- Added 0.48g Kaolinite, Activated Carbon, Walnut and Wood Feedstock Biochar to 15 mm tubes in a 5mm NaCl solution at pH 7
- Put on shaker for 48 hours
- Added 0-200 ppm of all metals, combined, to each tube
- Put on shaker for 24 hours
- Centrifuged, Filtered, Acidified
- Analyzed using Atomic Absorption
Method

Part III: Combined Metal and Biosolid Experiment

- Added 0.48g Kaolinite, Activated Carbon, Walnut and Wood Feedstock Biochar to 15 mm tubes in a 5mm NaCl solution at pH 7
- Put on shaker for 48 hours
- Added 0.48g of biosolids, then 0-200 ppm of metal to each tube
- Put on shaker for 24 hours
- Centrifuged, Filtered, Acidified
- Analyzed using Atomic Absorption
Results

I. Walnut Biochar and Activated Carbon sorbed the highest amount of metals

 • Walnut Biochar sorbed high amounts of Copper, Lead, and Cadmium

 • Activated Carbon sorbed high amounts of Copper and Lead

II. In general, metal sorption decreased with competition, with the exception of Copper and Lead bound to Walnut Shell Biochar.
Sorbed concentration in mg nickel, copper, lead and cadmium per kg of solid vs. equilibrium concentration. **Single metal solutions** were used.

Sorbed concentration in mg nickel, copper, lead and cadmium per kg of walnut biochar vs. equilibrium concentration. A single solution of the **combined metals** was used.
Wood Feedstock Biochar:
Single Metal Solution vs. Combined Metal Solution

Sorbed concentration in mg nickel, copper, lead and cadmium per kg of solid vs. equilibrium concentration. **Single metal solutions** were used.

Sorbed concentration in mg nickel, copper, lead and cadmium per kg of wood feedstock biochar vs. equilibrium concentration. A single solution of the **combined metals** was used.
Sorbed concentration in mg nickel, copper, lead and cadmium per kg of solid vs. equilibrium concentration. **Single metal solutions** were used.

Sorbed concentration in mg nickel, copper, lead and cadmium per kg of kaolinite vs. equilibrium concentration. A single solution of the **combined** metals was used.
Sorbed concentration in mg nickel, copper, lead and cadmium per kg of solid vs. equilibrium concentration. **Single metal solutions** were used.

Sorbed concentration in mg nickel, copper, lead and cadmium per kg of activated carbon vs. equilibrium concentration. A single solution of the **combined metals** was used.
Results

III. Walnut biochar and activated carbon show possible increase in sorption of copper in comparison with sorption to only biosolids

- Difficult to compare because twice the mass was used than in the combined metal experiments resulting in half isotherms
- More research necessary
Combined Metal sorption in Biosolids vs. Biosolids and Walnut Biochar

Sorbed concentration in mg nickel, copper, lead and cadmium per kg of biosolids vs. equilibrium concentration. A single solution of the **combined metals** was used.

Sorbed concentration in mg nickel, copper, lead and cadmium per kg of biosolids and walnut biochar vs. equilibrium concentration. A single solution of the **combined metals** was used.
Combined Metal sorption in Biosolids vs. Biosolids and Activated Carbon

Sorbed concentration in mg nickel, copper, lead and cadmium per kg of biosolids vs. equilibrium concentration. A single solution of the combined metals was used.
Future Research

- Lower concentrations of lead and cadmium in the biosolids studies needs to be used to determine if there is an increase in sorption when solids (biochar, activated carbon, kaolinite) are added.

- Studies to determine where the sorption is occurring between biosolids and solids.

- Higher concentration of metals or lower amount of solids in the biosolids experiments to achieve a complete isotherm.
Conclusions

- Walnut shell biochar and activated carbon show high sorption of heavy metals especially copper and lead.

- Walnut shell biochar and activated carbon could enhance sorption of heavy metals by biosolids

Possible applications:
- Use of walnut shell biochar for remediation of contaminated soils
- Use of walnut shell biochar to prevent leaching of heavy metals into water supplies
- Use of walnut shell biochar in wastewater treatment
Acknowledgements

- Sanjai Parikh
- Fungai Mukome, UC Davis
- Kearney Foundation of Soil Science Undergraduate Research Fellowship
- Parikh Soil Chemistry Group, UC Davis