Randal J. Southard^{*1}, Stewart S. Winters¹

¹Department of Land, Air, and Water Resources, University of California, Davis, CA, 95616 *Mentor

SOIL DEVELOPMENT AND FERTILITY IN AN ALLUVIAL CHRONOSEQUENCE, SOUTHWESTERN SACRAMENTO VALLEY

Background

- Properties change as a soil becomes progressively older
 - Mineral weathering → desilication of primary minerals
 - Changes in minerology effect on soil fertility in regard to nutrient avilability
- Monitoring one soil over the course of its "life" → not feasible
 - Substitution of space for time

Project Goals:

- To understand the dynamics at play as soils weather in a chronosequence of soils derived from Putah Creek alluvium:
 - Changes in mineralogy
 - Soil texture
 - Cation exchange capacity
 - Nutrient abundance

To Achieve This:

Soils sampled in the chronosequence

- Yolo Series <2,000 y.o.
- Hillgate Series 75,000-192,000 y.o.
- Corning Series 200,000-400,000 y.o.
- Each soil described in the field

 Sampled by morphological horizon to a depth ~60 cm (average rooting depth of most crops)

Procedures:

- Oven drying to determine AD H₂O content
- Particle size analysis
 - OM oxidation
 - Sand separation by wet-sieving through a 300 mesh sieve
 - Silt/Clay flocculation using NaCl
 - Clay content dertemination via extraction of an aliquot

Procedures Continued:

- Fractionation silt/clay separation by centrifugation
- Oriented clay mounts for XRD
 - 3 slides/soil horizon
 - Clay treated with:
 - KCI
 - Post-XRD: KCI slides heated to:
 - 350° C 2 hrs.
 - 550° C − 2 hrs.
 - MgCl₂
 - MgCl₂ + 1:1 glycerol and water mix

Procedures Continued:

• CEC₇

Mechanical vacuum extraction by NH₄Oac

- \circ Samples flooded with NH₄⁺
- washed with ethanol
- Sorbed NH₄⁺ was displaced with Na
 - displaced ammonium was measured colorimetrically
- NH₄Oac extracts → atomic absorption & flame photometry determined extractable:
 Ca²⁺, Mg²⁺, Na⁺, and K⁺
- %BS

Physical Characteristics

SOIL	DEPTH	COLOR				TEXTURE SAND		SILT	CLAY	ROCK	AIR DRY	CONSISTENCE	
				V	С		%	%	%	FRAGS	H?O CONTENT	D	W
YOLO	0-20	D	2.5 Y	6	3	loam	37.5	41.9	20.6	-	0.0316	VH	SS
		М	2.5 Y	3	3								SP
	20-43	D	2.5 Y	5	3	loam	38.0	43.6	18.4	-	0.0626	EH	SS
		М	2.5 Y	3	3								SP
	43-60	D	2.5 Y	5	4	loam	41.5	44.0	14.5	-	0.0619	SH	SO
		М	2.5 Y	4	4								SP
HILLGATE	0-9	D	2.5 Y	6	4	loam	51.0	38.6	10.4	-	0.0121	MH	SS
		М	2.5 Y	4	4								MP
	9-26	D	2.5 Y	6	4	loam	50.9	36.2	12.9	-	0.0186	SH	SS
		М	10 YR	4	4								SP
	26-35	D	10 YR	5	4	sandy	53.5	35.5	11.0	-	0.0131	HA	VS
		М	10 YR	4	4	loam							MP
	35-67	D	10 YR	5	4	sandy	52.6	34.8	12.6	-	0.0216	HA	VS
		М	10 YR	4	4	loam							MP
CORNING	0-33	D	2.5 Y	6	4	sandy	64.0	23.9	12.1	50%	0.0116	MH	SS
		Μ	10 YR	4	4	loam				GR			SP
	33-43	D	10 YR	6	4	sandy	63.2	19.5	17.3	70%	0.029	HA	SS
		Μ	7.5 YR	4	6	loam				GR			MP
	43-57	D	7.5 YR	4	6	sandy clay	63.4	14.2	22.4	66%	0.0427	MH	SS
		М	5 YR	4	6	loam				GR			MP

Results: Physical Characteristics

Color

Soil progressively redder with age

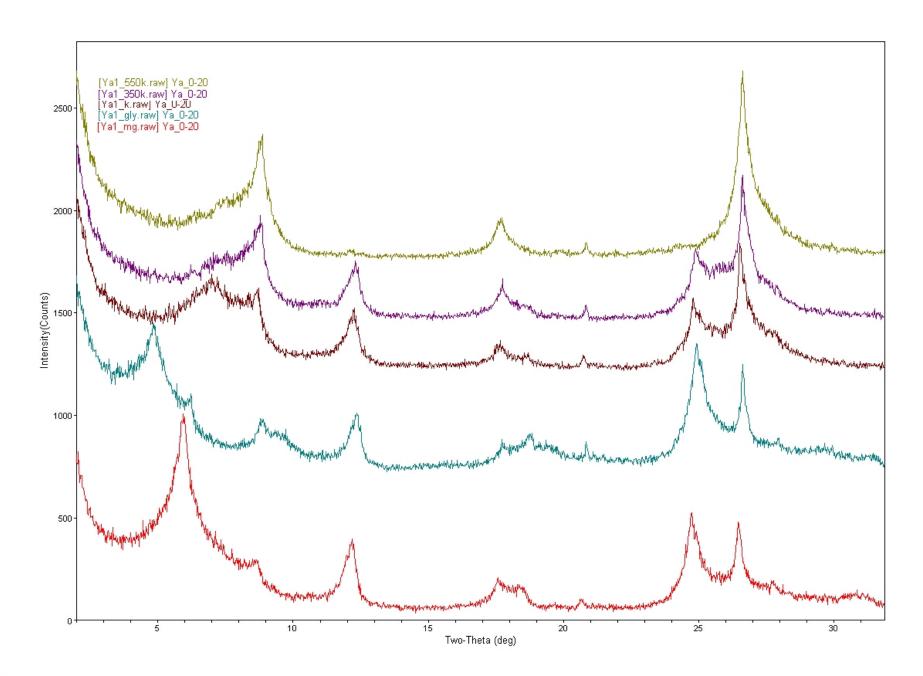
- Leaching and accum. of Fe-oxides
- Clay content and distribution

Chemical Characteristics

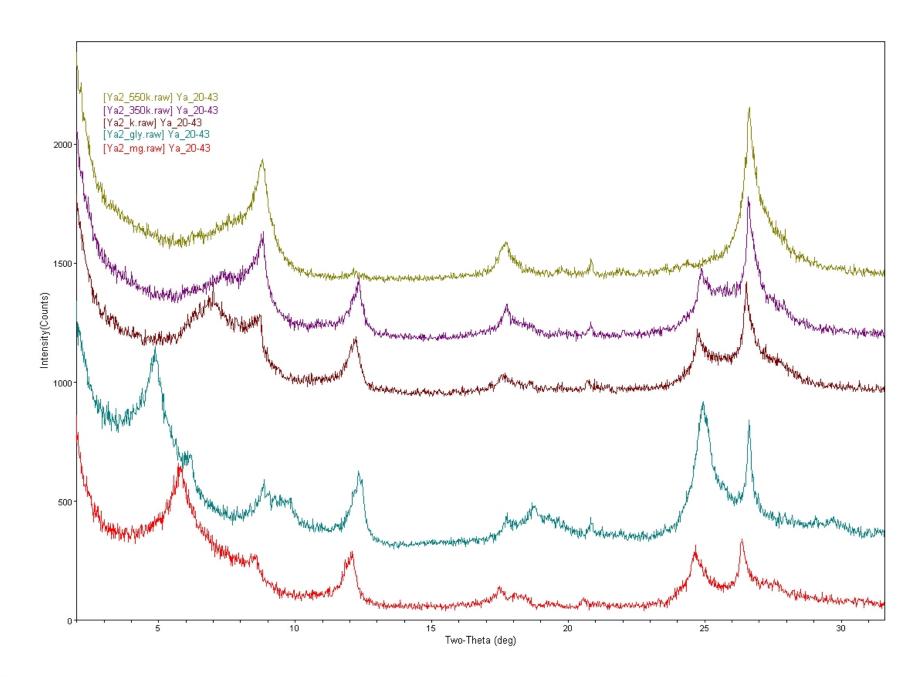
SOIL	DEPTH	pН	OM	CEC	Ca	Mg	Na	K	BS
	(cm)		%		cmol/kg soil	cmol/kg soil	cmol/kg soil	cmol/kg soil	
YOLO	0-20	6.87	2.41	12.5	5.43	6.77	0.56	0.60	107
	20-43	7.51	0.65	12.4	4.22	6.21	0.66	0.37	92
	43-60	7.61	0.87	13.7	4.58	7.27	0.93	0.21	95
HILLGATE	0-9	8.2	1.27	6.6	17.94	0.85	0.66	0.25	298
	9-26	8.53	0.79	7.4	3.05	3.88	1.05	0.17	110
	26-35	8.42	0.26	10.7	3.47	5.37	1.54	0.18	99
	35-67	8.34	n.d.*	4.9	2.83	1.89	0.58	0.16	112
CORNING	0-33	6.15	0.96	5.9	2.30	2.23	0.64	0.15	90
	33-43	6.27	n.d.*	8.3	2.68	3.45	0.63	0.15	83
	43-57	6.66	n.d.*	5.0	4.12	1.16	0.91	0.18	128

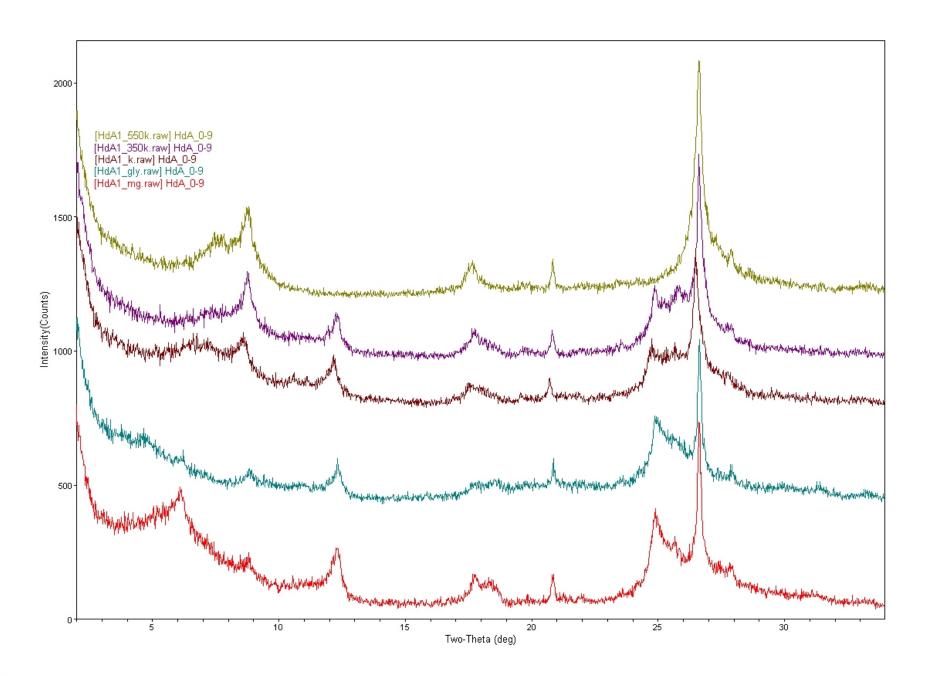
*n.d. = none detected

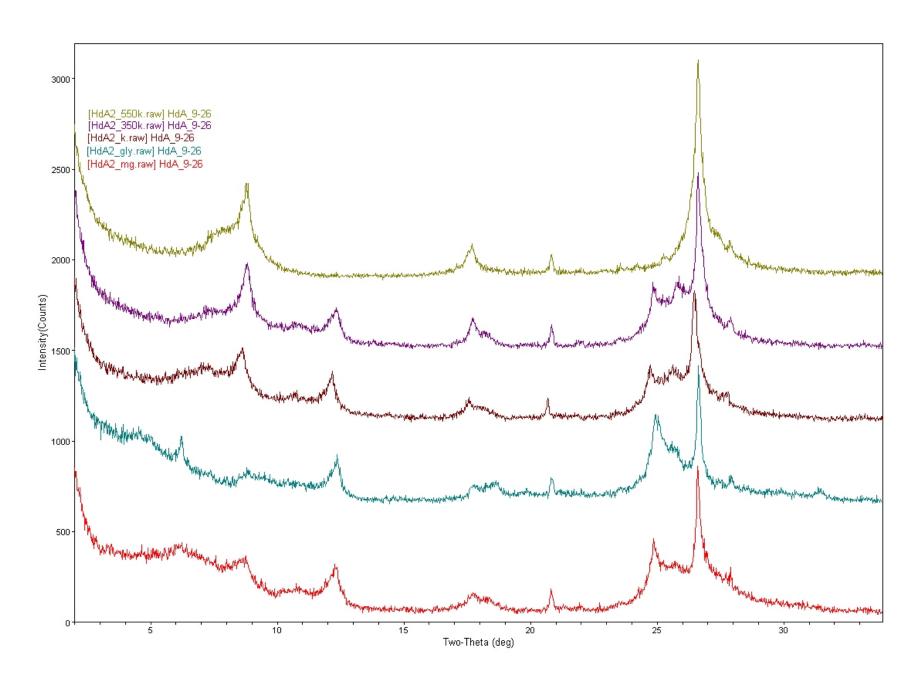
Results: Chemical Characteristics

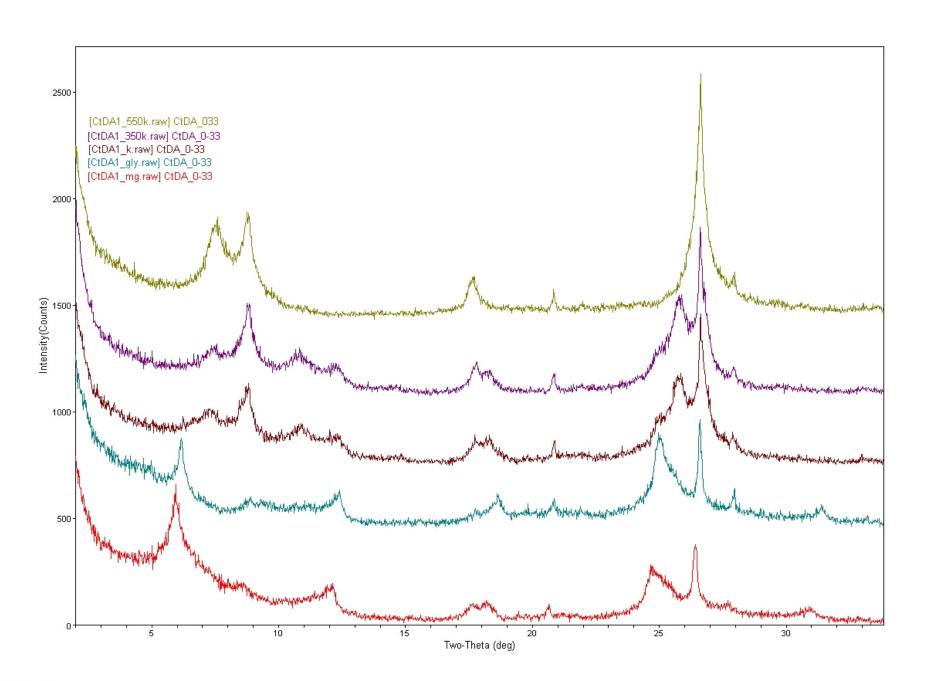

● pH

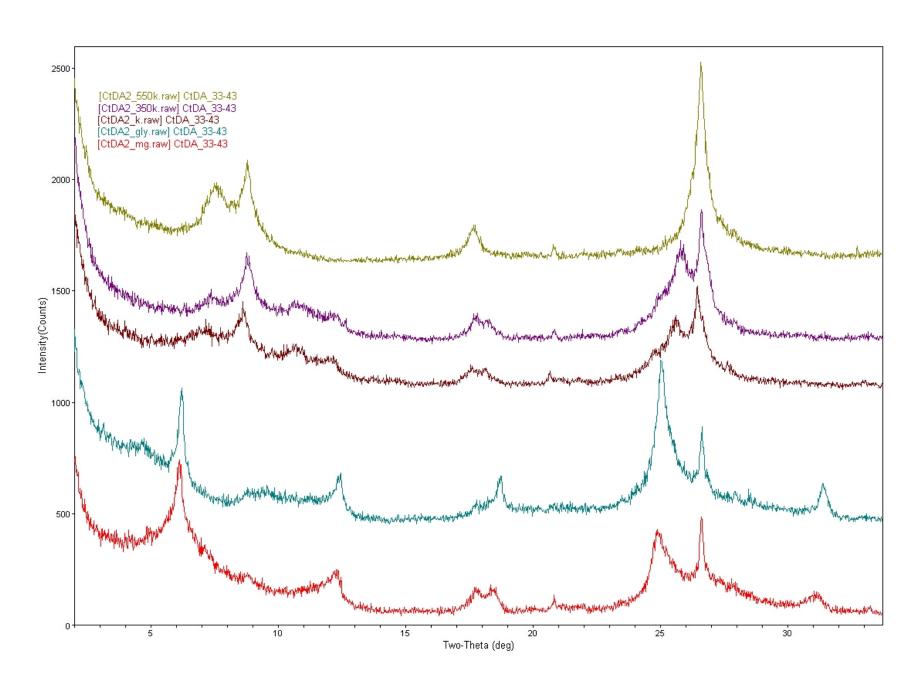
- Ca²⁺ limitation in Hillgate soil
- Soils in range to dissociate P from constituents → more readily available
- Higher clay content could help hold nutrients in rooting zone
- Little OM to contribute to release of N & S
 - OM distribution relative to pH


Results: Chemical Characteristics


OEC


- Low OM contribution
- Decrease in nutrient abundance with age
 - Mineral desilication




.

Results: Minerology

Yolo
Smectite
Vermiculite
Kaolinite
Quartz
Mica

Hillgate
Same as Yolo
Feldspar
Weakening of Smectite collapse Corning
Similar to previous
Weakening of Smcetite collapse
Mica absent

Conclusion

Smectite collapse

- Water disassociates from hydrated AI causing AI-polymerization
 - Polymers deposited between interlayers → HIMs
 → superlattice effect
 - HIMs replace smectite crystllinity
- Hydroxy interlayering
 - Decrease BS
 - Increase acidity (as in Corning)
 - Interlayer pockets trap K & cause selectivity in the exchange complx

Thank You...

- Kearney Foundation
- Professor Randy Southard
- Grad Students:
 - Kevin Muzikar
 - Valerie Bullard
 - Hideomi Minoshima
- LAWR Faculty:
 - Tad Doane
 - Cindy Bergens