Soil Organic Carbon Storage Along an Elevational Transect in the White Mountains, Inyo County, eastern California

J. Aapris Frisbie
Soil & Water Sciences Program
University of California, Riverside
Research Objective

To analyze the present characteristics of soils along an elevational transect to predict the effects of climate change on soil organic carbon sequestration.
Elevational Transect in the White Mountains, Inyo County, eastern California
Research Question

- How will climate change affect soil carbon sequestration in the arid regions of eastern California?
Presentation Outline

- Overview of vegetation and climate
- Resulting carbon storage at each site
- Conclusions
- Implications for climate change
Valley Floor, 2464 m

MAP: 135 mm

MAT: 13.4 deg. C

Hop-sage/Blackbrush, 2464 m

Interspace

Haplariogids

Shrub
Organic Carbon: 2464 m
Big Sagebrush/Pinyon Pine, 2773 m

Haplargids

Tree

Interspace Shrub
Organic Carbon: 2773 m

Interspace

Shrub

Tree
Sagebrush, 3513 m
Organic Carbon: 3513 m

Interspace

Shrub
Alpine Grassland, 3884 m

Interspace

Argicryolls

Shrub
Organic Carbon: 3884 m
Alpine Grassland
Talus Field, 4284 m

MAP: 500 mm
MAT: -4.3 deg. C

Haplorthhels
Organic Carbon: 4284 m
Organic Carbon vs. Elevation

![Graph showing organic carbon vs. elevation with data points for different elevations and cover types: Shrub, Tree, Interspace, and Uniform cover.](image)
Conclusions

• Carbon is stored in soils both under vegetation and interspaces

• Greater carbon content under localized regions of vegetation than in interspaces

• Interspace carbon increases with elevation
Conclusions Continued

- Although there is less vegetative density at 3884 m, alpine grassland is uniform across site landscape and overall soil organic carbon is highest.

- Greater carbon storage can be attributed to reduced microbial decomposition as a result of low temperatures.
Implications for climate change

• An increase in temperature due to climate change will increase microbial decomposition of organic matter

• Soils at higher elevations will take on properties of warmer soils at lower elevations

• A potential increase in carbon dioxide emissions from microbial decomposition may result