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why A Carbon Market?

e Emissions Reductions
— Reduce CO2 and other GHG

e Efficient Allocation of Emissions

— Distribute the emissions efficiently across
regions, countries, sectors, industries
within sectors, and firms within industries

e Kyoto Protocol
— Took effect on February 16, 2005



What Is Traded?

e Allowance-Based Transactions

— Trading of government-issued allowances
to emit GHG

» Project-Based Transactions

— Trading emissions credits generated by
projects that reduce GHG emissions



Carbon Market Volume

State and Trends of Carbon Market 2005

FIGURE 1: ANNUAL VOLUMES (million tCO,e) OF PROJECT-BASED EMISSION
REDUCTIONS TRADED (up to 2012 vintages)
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Who’s Buying?
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OECD
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How Big Is the Market?

FIGURE 6: TOTAL MARKET VALUE (ESTIMATE) PER YEAR in million U.S.

dollars (nominal)
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Prices Paid for Carbon

FIGURE 5: PRICES FOR NON-RETAIL PROJECT-BASED ERs January 2004 to April
2005 (in U.S.§ per tCO,e)
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ER = Emission Reductions (projects); VER = Verified Emissions Reductions;
CER = Certified Emissions Reductions; ERU = Emission Reduction Units
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One Tool -- LUS Analysis

Focus on Land Use Systems (LUS)
— Multi-year duration
— Different intermediate and end uses

Estimate Economic Effects

— Discounted streams of input costs and product
revenues

— Calculate economic returns to key factors of
production

e Land, labor
Estimate the Environmental Effects

Estimate the Sociocultural Effects

Highlight Institutional Impediments to LUS
Adoption




 Focus: Identify the Impacts in a maize-
wheat system of reduced till vs.
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CO2 and N20 flux

CO; flux from portable chambers, Jan-Dec 2004
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e Results to date

—Yields declined sharply in year one
 RT yield = 3.64 tons/acre

a ke

;hi":*-ﬂ;?: = Iesplte reduced operatlonal costs in RT

system proflts fell sharply
« RT NPV/acre (7 years) = $1022
« ST NPV/acre (7 years) f)._$15_97
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Cost of SOC
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) C Sequestration in LTRAS Organic
vsS. Conventional Maize-Tomato

Systems
LUS Even Years Odd Years
Conventional maize- fertilized irrigated corn fertilized irrigated tomato

tomato (CMT)

Organic maize-tomato winter legume / irrigated  winter legume / irrigated
(OMT) corn tomato
compost / no pesticides  compost / no pesticides

 Focus: Identify the effects of organic (vs.
conventional) management of a maize-
tomato rotation over 9 years on soil organic
carbon, crop yields and system profitability




Conventional

Crop Yields

(tons/acre)

maize | 5.84 4.64 4.64 5.66 b.63 58
tomato JTpecHF 2O 10.46 27.54 19.03
Organic
maize | 3.98 3.02 3.87 324 239 <pe il
tomato 31.16 26-31 30.73 32.40 30.15




Profitability

Net Present Returns to Profitability as % of
Value ($) Land Conventional
(/$/aclyear) System

Conventional 8278 307 =
Organic, No 1981 o 24%

Premium
Organic, 4315 160 52%

Declining

Premium
Organic, 5607 623 203%

Premium




Soill Carbon Accumulation

(over 9 years)
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Profitability & Increased Soil C

$623

600 1 LTRAS Yields, Organic,
Premium

B LTRAS Yields,
500 7 Conventional
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$390 No Premium

400 - | _
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Case Study Conclusions
(Preliminary)

e Stocks of Soil Carbon Can Be Increased In
California, but the Amounts Will Depend on:

— climatic conditions
— management strategy
— product mix
— soil type
« Changes in Product Mix and Crop Management
Strategies Can Increase Soil Carbon

— Such Changes Can Be Costly to Farmers, and Yields
and Profits May Decline

 Soil Carbon-Profitability Trade-Offs
— Field 74 Study Exhibited Trade-Offs
 Soil Carbon-Profitability Synergies

— LTRAS Tomato/Maize Study Exhibited Synergies
« These depended greatly on price the premiums




Policy Implications

Paying Farmers to Sequester Carbon Could Be
Expensive

Payment schemes would have to address local
heterogeneity in soil and climate conditions

Soil Carbon Pools Have Maxima and
Sequestered Carbon Can Be Quickly Lost

— Payment schemes need to take account of this

Not All Increases in Soil Carbon Are
‘Sequestered’
— Out-of-system inputs can matter greatly

— Perhaps these ‘imports’ should also be paid for
under incentive schemes



Implications for Research

e We Need to Know Much More About Carbon
Dynamics in California Soils
— Product mixes
— Soil management practices
— Solil types
— Limits to and stability of carbon pools

e We Need to Know More About the Effects of
Different Tillage and Residue Management
Strategies on:

— Yields

— Production costs
— Risk

— Profits



Contracts for Soil Carbon
Sequestration

e Standard Contracts

 Modifying Contracts to Meet the Needs of
California Farmers

— Duration

— Up-Front costs

— Escrow accounts
— Monitoring

— Within-contract changes in
 Product mix
 Production technology



e THANKS!

 WHAT ARE YOUR VIEWS?
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