Carbon Flow from Roots to Microbes to Soil Humic Substances

Jeffrey Bird, Robert Northup, Donald Herman, Meghana Gadgil and Mary Firestone Department of Environmental Science, Policy and Management University of California, Berkeley

^C C:N ¹³

637 8.6 318 37 1888

Roots

the bulk soil (< ² mm) (430 0/00) was

 13_C **0 /00**

Fig. 3. Mole fraction of selected phospholipid fatty acids (PLFA)
extracted from soil prior to establishment of wild oat crop. -ME (mole ź ິ 10 14 16 18 20 \blacksquare - Band of the state \blacksquare -Artine Funga ryc n specific **Thermode** --(+) Gram(+) -FA Gram (∙) Cyclo Gram (-) Fungal (18 266 8, 18:169c, 20:169c) %& ' (š &" -#("&

♦ **PLFA analysis will provide ^a quantitative measure of changes in the broad soil microbial community composition in the bulk soil due to the effects of living roots and N additions.**

- ♦ **In conjunction with 13C determinations, 13C-PLFA will enable the** comparison of the activity of microbial groups. The amount of
*A. barbata v*oot ¹³C converted into microbial biomass and its **turnover rate will be quantified among broad cell-type groups.**
- ♦ **The Argonaut soil has ^a relatively high PLFA-defined fungal:bacterial ratio of 0.29.**

Future Research Direction

We are considering two additional methods to further define changes in the composition and activity of the soil microbial communities due to
the presence of living roots and to complement the ¹³C-PLFA analysis.

♦ **Soil C and N enzyme activity assays**

♦ **T-RFLP analysis of community DNA extracted from soil in conjunction with 13C-DNA analysis.**

References

Dormaar, J.F. 1990. Effect of active roots on the decomposition of soil organic materials. Biol. Fertil. Soils. 10:121-126.

Herman, D.J., Halverson, L.J., and M.K. Firestone. 2003. Nitrogen dynamics in an annual grassland: oak canopy, climate and microbial population effects. Ecol. Appl. 13:593-604.

This research project asks how:

Introduction

Plant residue decomposition rates in soils have been shown to be increased and decreased in the presence of living roots and their exudates.
Living roots also have been shown to promote the conservation or **mineralization of native soil organic matter (SOM). Plant effects on soil** water status and N availability may partly explain many of the contradictory
results from greenhouse and field studies. The actual mechanisms involved, **however, are still elusive.**

Microorganisms mediate decomposition and humification processes in
soil (Fig. 1). A recent review of the effect of living roots on SOM turnover emphasized that the diversity of the microflora present at all stages of
interaction comprise a critical unknown in the process (Dormaar, 1990). Our current understanding of how below-ground life (living roots/microbial
communities and their activities) controls decomposition and humification **processes remains extremely limited.**

In this Kearney project we are developing ^a quantitative road map of the flow of C from plant roots to soil inicroorganisms to luminic materials. The impact of living roots on the pathways and outcomes of humification and the
effects of microbial community composition and activity will be quan

Microbial Metabolic Capacity (MMC)

Fig. 1. Humification processes in soils begin after the initial phase of residue decomposition and transformation. Decomposition is driven by activity of
microorganisms and their enzymes. The conceptual model depicts the
microbial community control of humification processes through the
incorporation of **microbialmetabolicofC, turnover of the biomass, and loss of C via CO2.**

• **Living roots affect the conversion of below-ground plant carbon into humicsubstances.**

• **Alteration of microbial community composition and activity by living roots regulates humification of below-ground carbon.**

• **The impact of living roots is dependent on N-availability.**

Approach

We are using ^a 13C tracer approac^h to follow the fate of C in the root system of *Avena barbata* **(wild oats) and to determine the effects of**

√ **Living roots (with and without subsequent crops of wild oats) Nitrogen availability (with and without added N)**

Experimental Design: 2 ^x 2 factorial design with 3 replicates Soil moisture is continuously monitored using dielectric constant moisture
probes and will be maintained at a constant water content of 60% of field **capacity during the treatment periods.**

 In Fall 2002, soil from the Schubert watershed at the Sierra Foothills Research and Extension Center, located 30 km east of Marysville, CA, was
excavated from a Oak Woodland ecosystem. Wild oats are the dominant **grass species (80%).**

- **The soil was sieved (6-mm screen) and packed into eighty-eight 10 cm ^x 30 cm PVC cylinders to ^a bulk density of 1.21 ^g cm-³ (field bulk density).**
- *A. barbata* **seeds were ^planted using ^a seed density of ~24,000 seeds m-2,** similar to field densities. Plant labeling with ¹³CO₂ began when plants
were 3 weeks old, using 8-hr exposures to the labeled atmosphere. A 10%
¹³C enrichment of CO₂ automatically re-supplied the plant-induced CO₂

 A climate controlled 13C labeling chamber was constructed at UC Berkeley to complete the plant labeling. Oats inUCBZ, UCD labeling chambe chamber

2002 2003 2004 2005 **F W S S ^F ^W S S ^F ^W S S 13 C labeling W** Treatment period 1 Fallow Treatment period 2 Treatment **N addition N addition Avena crop Avena cropSamplings interval** $+ + + +$

Fig. 2. Timeline of activities. After the ¹³C enriched oats **p** above-ground biomass was removed and the pots were exposed to a dry, warm
summer fallow. The initial treatments were applied in Sep. 2003. The N
treatment is a split application of urea-N added 3 and 8 weeks after
germinat **soila** listed **below** will be con

Soil Analyses **• Total ¹³ C in recognizable root debris (> 2 mm) and bulk soil (< 2 mm) • Light fraction ¹³ C and N (density fractionation) • Humic, fulvic and humin fraction 13C • Microbial biomass ¹³ C and N (CFE) • Microbial 13C in community groups (PLFA) • Inorganic N (K2SO4 extractable)**

Results

Table 1. Selected biochemical and physical soil properties (0-9 cm soil depth). Soil property

♦ **Soil used for this study is an Argonaut silt loam (Mollic Haploxeralf). pH Total C Total N Mineralizable C Mineralizable N Nitrification Bulk potential density mg ^N kg d-¹ ^g cm-3 5.42 25 2.5 320 9.6 5.70 1.21 g kg -1kg ha**¹

♦ **Research from this site suggests that both microorganisms and wild oats are a significant sink for nitrate, leading to low extractable nitrate levels during the Fall and Winter grass growing season (Herman et al., 2003).**

♦ **During the Fall and Winter, N limitation may affect the efficiency of** decomposers and reduce decomposition of the previously produced roots
and/or increase native SOM N mineralization. The N fertilization treatment **tested here, may shed light on this potentially regulating factor.**

Table 2. Biomass, C and N content, and ¹³C enrichment of above- and
below-ground wild oats in June 2003 (N=4).

13 C enriched *A. barbata*

biomass N

 $g m^2$ \longrightarrow $g kg^1$

♦ **Uniformly 13C–labeled** *A. barbata* **root material was highly enriched in 13 C (1888 0/00) after soil dry-down in June 2003, enabling long-term**

Table

Shoots biomass

1617

♦ **Microbial biomass size measured by both PLFA and CFE was relatively high for ^a soil with 5% SOM concentration.**

♦ **13C enrichment of the microbial biomass was similar to that of** the light fraction and more enriched than the bulk soil in June
2003 just after the production of the labeled oats.

