Greenhouse Gas Emissions from Conventional versus Minimum Till Fields: Baseline Data

J. Lee, J. Six, A.E. Patrick, J.L. MacIntyre, C. van Kessel, D.E. Rolston, J.W. Hopmans, R.E. Plant, and K.T. Paw U University of California, Davis

INTRODUCTION

- n Agriculture contributes significantly to greenhouse gas (GHG) emissions by altering C and N cycles on regional to global scales.
- n One proposed mitigation option is increasing the amount of soil C and N sequestered in minimum tillage systems.
- n In agricultural systems, the mechanistic relationship between changes in C and N cycling induced by minimum tillage and the concomitant flux of GHG's remains unanswered.
- n We started a study to determine soil processes regulating C and N sequestration and GHG emissions.

OBJECTIVES

- n To determine spatial and temporal characteristics of factors controlling soil C and N sequestrations in a CA agricultural system.
- n To determine and quantify soil processes controlling GHG emissions under CT versus MT.
- n To evaluate the net effect of CT and MT systems on GHG emissions.

SITE DESCRIPTION

- n Located in the Sacramento Valley (CA), managed under CT until 2002, when it was converted to MT.
- n Cropping system: corn (2002), wheat (2003).
- n Three soil types: Myers clay (Ms), San Ysidro loam (Sh), and Hillage loam, moderately deep, 0 to 2 percent slopes (HdA)

MATERIALS and METHODS

Soil and wheat biomass sampling

Soil samples were taken at the 0-15, 15-30, and 30-50 cm depths by using a Dutch auger in February 2003, and wheat biomass was collected by hand harvest at the same locations in May 2003.

Analysis

- n Total C, total N, delta ¹³C, delta ¹⁵N, and soil texture.
- n The total amount of C input via shoot and root biomass of wheat.
- n Estimation of all variables across the whole field by applying kriging. Correlation and regression analyses among variables (SAS, 2003).

RESULTS and DISCUSSION

Table 1. Total C, total N, delta ¹³C, delta ¹⁵N, and soil texture and the amount of Cinnut via wheat hismans (n. EO)

and the amount of C input via wheat biomass (n=50).								
	Depth (cm)	Mean	Range	CV (%)				
Total C (%)	0-15	1.05	0.64~1.61	17				
	15-30	0.77	0.32~1.03	17				
	30-50	0.60	0.25~0.87	21				
Total N (%)	0-15	0.11	0.08~0.14	13				
	15-30	0.09	0.05~0.11	13				
	30-50	0.07	0.04~0.09	15				
Delta 13C (‰)	0-15	-21.75	-22.90~-19.00	3				
	15-30	-23.44	-24.44~-22.15	3				
	30-50	-24.10	-25.03~-21.46	3				
Delta ¹⁵ N (‰)	0-15	5.02	3.58~7.41	15				
	15-30	4.99	2.99~6.19	14				
	30-50	4.92	2.74~6.46	16				
Sand (%)	0-15	29.0	18.9~43.4	26				
	15-30	24.5	15.5~45.2	32				
	30-50	23.1	13.0~42.4	35				
Silt (%)	0-15	52.9	41.6~60.9	10				
	15-30	55.6	40.5~62.5	10				
	30-50	55.4	42.3~63.3	10				
Clay (%)	0-15	18.2	13.3~22.8	15				
	15-30	20.0	14.2~25.1	15				
	30-50	21.5	14.6~27.5	14				
Shoot C input (kg ha ⁻¹)		3427	646~7452	51				
Root C input (kg ha ⁻¹)		276	26~548	44				
Total C input (kg ha ⁻¹)	3703	882~7890	47				
Root/shoot rat	io	0.11	0.01~0.37	76				

- ▶ Total C, total N, delta ¹³C, and delta ¹⁵N showed a spatial variability at the field scale.
- ▶ The root/shoot ratio was highly variable across the field.

Figure 1. Estimation of total C, total N, delta ¹³C, and the amount of C input by wheat biomass across the field.

Table 2. Pearson correlation coefficient (r) among all variables (0-15 cm)

	Total C	Total N	Delta	Delta	Sand	Silt	Clay	Shoot C	Root C	Total C
			13C	¹⁵ N				input	input	input
Total C	-	0.95	0.57	0.21	-0.47	0.53	0.30	0.03	0.18	0.04
Total N		-	0.44	0.12	-0.43	0.49	0.26	0.13	0.12	0.14
Delta 13C			-	0.09	-0.14	0.1	0.18	-0.31	0.09	-0.30
Delta 15N				-	-0.44	0.42	0.41	0.02	0.22	0.03
Sand					-	-	-	-0.20	-0.30	-0.22
Silt						-	-	0.20	0.30	0.22
Clay							-	0.17	0.26	0.19
Shoot C input								-	-0.01	0.99
Root C input									-	0.06
Total C input										-

- P < 0.05; P < 0.01; P < 0.001; not significant
- ▶ Total C, total N, and delta ¹⁵N in the top 15 cm of soil were positively related to silt and
- ▶ Soil organic C and N were not related to C input by shoots and roots of wheat.
- ▶ There was a significant relationship between C input via root biomass and sand or silt.

CONCLUSIONS

- n Spatial variability of soil organic C and N is great at the field and landscape scales.
- n Silt and clay contents are key factors which control the storage and sequestration of soil C and N.
- n C input by wheat biomass was a poor indicator for the spatial distribution of soil C and N.
- n Other model types (e.g., polynomial) could be more useful to determine relationships between soil organic C and N and other variables than linear model.

NEXT RESEARCH APPROACH

- n Total C, total N, and ¹³C associated with particulate organic matter size classes at the 0-15 cm depth at 140 locations will be determined.
- n Soil texture, bulk density, soil water, soil temperature, and other physical factors at the different depths will be measured.
- n The net flux of GHG's from the soil surface as affected by different tillage practices (CT vs. MT) will be measured.
- n Changes in microbial biomass in the top 15 cm of soil will be analyzed.