The role of mineral-N in the decomposition of residues, microbial C and N cycling, and formation of soil organic matter

Kelly K. Morana, Johan Sixa, William R. Horwatha, Jan-Willem van Groenigenb, Chris van Kessela ^aUniversity of California, Davis; ^bAlterra, the Netherlands

Soil Only

Introduction Many nutrient cycling models assume that residue decomposition is controlled by

the C to N ratio, and therefore residue-C and -N are considered closely linked.

•Recent studies suggest that under N-fertilization and N-deposition, mineral-N may preferentially be used in the formation of stable soil organic matter compared to residue-N

•We conducted a study to determine if residue quality, with and without the addition of mineral-N, affects the cycling of C and N through the soil microbial biomass, and consequentially controls the formation of stable soil organic matter.

In a second study we followed the fate of labeled residue-C with and without mineral-N additions.

Experiment 1: Labeled Microbial Biomass

Hypothesis & Objectives

- Ho: Mineral-N addition will increase the cycling of C through the microbial biomass. This effect will be greatest with high C:N residue.
- O1.) How do mineral-N additions affect microbial C and N cycling with added residue of different C:N ratios?
- O2.) Are residue-C and N assimilated proportionally by the microbial biomass upon mineral-N additions?

Group I Group II Group III

Controls Mineral-N Residues Combinations

residue

residue

Urea Low C:N Low C:N residue +

Middle C:N Middle C:N

residue | residue + urea

High C:N High C:N residu

Group IV

+ urea

Methods

Label soil microbial biomass:

Added ¹³C-glucose and (¹⁵NH₄)₂SO₄

Incubate 2 days at 55% water holding capacity

·Rice residue and urea

Normalized for N

•Low C:N = 45:1; Mid C:N = 62:1,

High = 99:1

Experiment Incubation:

1 Initial to and Final tan: microbial biomass atom% 13C and atom% 15N (chloroform fumigation incubation, analysis by GC-IRMS)

1 Days 1,2,4,8,15,30,40: gas sampling for 13C-CO.

Results and Discussion Methods **Objective 1** Inputs:

high C:N res + mineral-N - high C:N res + mineral-N - high C:N res - mid C:N res + mineral-N - mid C:N res - low C:N res + mineral-N - low C:N res - mineral-N only - soil only

Respiration highest for high C:N. followed by mid and low.

Mineral-N addition increased respiration the same magnitude Analyses: across all C:N residues.

Cumulative Respiration Normalized for C Added

high C:N res + mineral-l

→ high C:N res + mineral-N
→ mid C:N res + mineral-N
→ low C:N res + mineral-N
→ high C:N res
→ mid C:N res

(NH₄)₂SO₄ mineral-N source •¹3C¹5N-labeled and unlabeled rice straw

Experiment Incubation:

•90 days at 25°C at 55% water holding capacity

Days 1,2,4,6,15,30,60, 90: gas sampling for ¹³C-CO₂

1 Microbial biomass δ¹³C and atom% ¹⁵N (chloroform fumigation-extraction) (in progress)

SOM fractionation into light fraction, humic, fulvic and humin after 90 days (in progress)

Preliminary Results and Discussion

Mineral-N increases mineralization of residue-C.

Fractionation of SOM after 90 days will test whether this increase in respiration signifies a stimulation of the microbial biomass that will produce more stable SOM.

Group I Group II Group III Group IV
Controls Mineral-N Residues Combinations

Residue

15N-Mineral 13C15N- 13C15N-Residue +

Mineral N

Residue + 15N-Mineral N

Objective 2

Pattern and change the same across C:N ratios

. Dilution depends on amount of N added, no

difference whether it came from residue-N or

Microbial respiration highest

when low C:N residue is

added.

urea-N

25

atom% 13 C noal - atom% 13 C background

·Little difference in MBC pool dilution among ·Slightly more dilution in high C:N residue

Summary & Conclusions

Experiment 1

Mineral-N additions increased soil respiration regardless of residue quality

 Microbial respiration increased with residue addition in the order Low C:N > Mid C:N > High C:N on a g-1 C added basis

•Residue-C and residue-N were not linked through the microbial biomass upon mineral-N addition.

•The decoupling of residue-C and -N through the microbial pool may suggest a direct role of mineral-N additions in the cycling and sequestration of C.

·Soil-derived respiration was unaffected by treatments (no priming)

Mineral-N additions increase respiration of residue-C

•Whether this increased respiration results in more stable SOM formation will be determined by fractionations after 90 days.

Experiment 2: Labeled Inputs (in progress) **Hypothesis & Objectives**

H_n: Fertilizer-N contributes more to stable SOM formation than residue-N.

O1.) Determine if addition of fertilizer-N leads to more stable SOM formation

O2.) Determine if fertilizer-N is the predominant N-source in stable SOM when both are present.

•40 days at 25°C at 55% water holding capacity